

G-Fall: Device-free and Training-free Fall Detection with Geophones

Presenter: Yandao Huang

Yandao Huang, Wenqiang Chen, Hongjie Chen, Lu Wang, and Kaishun Wu Shenzhen University, China

SECON 2019

Boston, USA Jun. 10 – 12, 2019

Background

									Ē	ī	_						ī														-											
	•					ī	Ξ		E	ī				Ē	Ξ	Ξ	ī	Ξ									ı٦			Ē	Ξ	ī				ī						
	Ξ.				Ξ.	Ξ	Ξ.		Ξ	Ξ					Ξ	-	Ξ									5		-	Ξ.	Ξ	Ξ.	Ξ	Ξ.	Ξ		-	Ξ					
Ξ	Ξ.	2	Ξ.	Ξ.	Ξ.	2	Ξ.	2	Ξ	2	-				Ξ	-		-	-						-			-	Ξ.	Ξ	Ξ.	Ξ	Ξ.	Ξ	Ξ	Ξ	Ξ	Ξ	2	Ξ.	=	-
	Ξ.		Ξ.	Ξ.	Ξ.	2	Ξ.	2	2		Ξ	-			-	-						-			-	÷		-	Ξ.	2	Ξ.	Ξ	Ξ.	2	Ξ	Ξ	=	=	2	Ξ.		
_	-			=	Ξ.	2	=	2	2	_	2		_								_							-	2	2		2	=	2	=	2		=				
					-	-		-						_								_	-	Ŀ	-	÷																
																										T.																
								_	_														1	Ī.					_	_												
										_	-	-							_	Ē								_			-			_								
											Ξ	F		-						7			÷	Ŀ	-						Ξ.	-										
											Ξ	-		-	Ξ	Ξ								Ŀ												Ξ						
														2	2									ŀ	ŀ									-	-							
												-				-																_	_	-	=		_					
																								Ŀ								-		-								

≈190 million(1.91⁄Z) elders fall at home each year

2.5% World Population

Existing Methods

IMUs

- Gyroscope Obtrusive ×
- Accelerometer Forgetful ×

RF ≻ WiFi (CSI) Training × False-alarm ×

Live video stream

Related Work

Accelerometer (SRS) + Microphone (MFCC) Bayes Classifier

Dataset: 40 drops of human mimicking doll (74 kg) 76 drops of objects and other events.

Yaniv Zigel, Dima Livak and Israel Gannot. "A Method for Automatic Fall Detection of Elderly People Using Floor Vibrations and Sound–Proof of Concept on Human Mimicking Doll Falls", IEEE Transactions on Biomedical Engineering, vol. 56, no. 12, 2009

Prototype

G-Fall Prototype ≈ ¥ 300 (\$45)

Preliminary study

- i) Physical lesions incur the uncoordinated walking or faint
- ii) falling over the obstacles due to poor vision
- iii) losing balance on a slippery floor such as in a bathroom

Fall

slip

Preliminary study

8

Our approach

Main components below 300Hz

Sample rate 1190Hz

Denoising 20Hz High-pass butterworth filter

Energy-based detection start point

$$E(t) = \sum_{i=t}^{t+L} s^2(i)$$

L: the length of the sliding time window s(i): the amplitude of the received vibration signals

11

Discrete Wavelet Transform (DWT)

- DWT performs a nice tradeoff between time and frequency resolution
- ii) DWT reduces the size of the input sample

Details:

We calculate the energies for 8 levels using Daubechies wavelet in the order of 6 and extracts a 100-dimensional feature vector.

Hidden Markov Model (HMM)

 $\lambda = (A, B, \pi)$

A: transition probability matrix B: emission probability matrix π : initial state vector

Training: Baum-Welch Algorithm

Energy-of-Arrivial (EoA) Localization algorithm

Time Difference of Arrival (TDoA)

- Estimation of accurate time difference
- High sample frequency (65kHz)
- Estimation of signals propagate velocity
- Trouble by Dispersion nature

Energy-of-Arrivial (EoA)

- Estimation of energy of arrival
- Low sample frequency (1190Hz)

Energy-of-Arrivial (EoA) Localization algorithm

Attenuation Model:

$$Amp(d) = Amp_0 e^{-\alpha \times d}$$

Amp₀: the initial amplitude
d : the propagation distance
α : the attenuation coefficient
Amp(d): arrival of amplitude from d

$$A(d_1) = Amp_0 e^{-\alpha \times d_1}$$
$$B(d_2) = Amp_0 e^{-\alpha \times d_2}$$
$$C(d_3) = Amp_0 e^{-\alpha \times d_3}$$

EoA Localization algorithm

$$A(d_1) = Amp_0 e^{-\alpha \times d_1}$$
$$B(d_2) = Amp_0 e^{-\alpha \times d_2}$$
$$C(d_3) = Amp_0 e^{-\alpha \times d_3}$$

Energy ratio:

$$E_{AB} = \frac{A^2(d_1)}{B^2(d_2)} = \left(\frac{Amp_0 e^{-\alpha \times d_1}}{Amp_0 e^{-\alpha \times d_2}}\right)^2 = e^{-2\alpha \times (d_1 - d_2)}$$

$$d_{1}-d_{2} = \frac{\ln E_{AB}}{-2\alpha} = c_{1}$$

$$d_{1}-d_{3} = \frac{\ln E_{AC}}{-2\alpha} = c_{2}$$
Hyperbola

Evaluation—Setup

TABLE I The height-weight-age table of the participants										
No.	H(cm)	W(kg)	Age	No.	H(cm)	W(kg)	Age			
1	178	58	19	7	168	58	21			
2	179	57	20	8	181	68	22			
3	170	60	26	9	168	58	21			
4	177	66	27	10	156	48	20			
5	165	61	29	11	168	52	20			
6	168	55	20	12	182	59	21			
Hei	i ght (cm	ו)	Wei	i ght (k	Age					
[15	6, 182]	[48	8-68]	[19-29]					

 TABLE II

 Description of actions for the data collection

Standard Fall Lo	oc. Other Actions	Loc.
Trip forward Trip forward Trip forward Slip backward Slip backward	ASitBMark time HeavilyCFall forward from a chairATrip forward-Hold on a chairBWalk normally along the track	A A A Track

 $Precision = \frac{\# \text{ of truly detected fall}}{\# \text{ of human fall}}$

$$P_{fls} = \frac{\text{\# of wrongly detected fall}}{\text{\# of other events}}$$

Baseline accuracy (one-person training set)

TABLE IIIBaseline performance of G-Fall with one person in the training set

Class. As Event	Human Fall	Others	Total	Accuracy
Human Fall	495.45	54.55	550	90.08%
Sit	22.68	277.32	300	92.44%
Mark Time	64.05	235.95	300	78.65%
Normal Walk	54.81	1145.19	1200	95.43%
Heavy Walk	227.41	972.59	1200	81.05%
Objects	6.75	68.25	75	91.00%

Training set size enlarge from 5 to 20, the accuracy rise from 80.9% to 94.8%.

Baseline accuracy (one-person training set)

TABLE IV

Comparison of different classifier with one person in the training set

Items	HMM [29]	KNN [35]	SVM [36]	BPNN [37]
Precision	90.08%	83.21%	79.73%	82.08%
P_{fls}	12.30%	17.34%	12.55%	15.70%

HMM provide the best performance

Impact of training set size

Training set size enlarge from one-person to sevem-person, the accuracy rise from 90.08% to 95.74%.

Impact of different locations

Location independent

Impact of different locations

Location independent

Impact of non-standard fall

No impact when people perform non-standard fall

Effectiveness of EoA

Smaller localization error, and reduce the false alarm to nearly 0%

Conclusion

- G-Fall is the first work to realize a real-time fall detection machine with geophone sensors, achieving a detection precision of 95.74%.
- We propose a reconfirmation mechanism based on Energy-of-Arrival (EoA) localization, the false alarm rate is reduced from 5.30% to nearly 0%.
- G-Fall, is privacy-protected, device-free, training-free, and low false-alarm, which is promising to put into practical use in the future.

Thank you!

Detection of moving signs

$$THR = \sum_{i=1}^{3} \sqrt{(n_i - n_0)^2 + (m_i - m_0)^2}$$

The estimated coordinate of fall position is $P0(n_0, m_0)$ and that of next three steps is $P1(n_1, m_1)$, $P2(n_2, m_2)$, $P3(n_3, m_3)$